terça-feira, 10 de dezembro de 2013

Alternativas para a produção de celulases em fermentação submersa, utilizando resíduos agroindustriais

Oi pessoal, esse é um artigo de revisão que foi publicado na Internacional Journal of Modern Engeneering Research (IJMER), referente ao meu tcc, disponível em http://www.ijmer.com/papers/Vol3_Issue4/DK3423742381.pdf


Alternatives for Cellulase Production in Submerged Fermentation with Agroindustrial Wastes




Fernanda Miranda Zoppas1, Álvaro Meneguzzi2 , Francine Tramontina3

*(Laboratório de Corrosão, Proteção e Reciclagem de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.)

Email: fernandazoppas@gmail.com

**(Laboratório de Corrosão, Proteção e Reciclagem de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.)

Email: meneguzzi@ufrgs.br)

***(Universidade Estadual do Rio Grande do Sul, Bento Gonçalves, Brasil

Email: francinetramontina@yahoo.com.br)




ABSTRACT: This article presents a review of the alternatives for cellulase production in submerged fermentation using agroindustrial residues as carbon sources. Among the wastes that are cited, the residue of grapes shows promise for producing these enzymes. The advantages associated with this process refer to the removal of industrial waste from the environment that is associated with the same added value through the production of enzymes.

Keywords: Aspergillus niger. Cellulase. Grape marc. Submerged fermentation

1. Introduction

The southern region of Brazil stands out in the wine industry by volume and quality of wines. As a consequence of this economic activity, grape residues are produced in large quantity per year. These residues are rich in cellulose and can be reused as a carbon source for several processes, including the production of enzymes.

Cellulases are enzymes that form a complex capable of acting on the cellulose and promote its hydrolysis. These enzymes are commonly used in various areas of industry, including food, beer and wine, agriculture, paper, textiles, detergent and animal feed, is also an alternative for generating energy. This paper presents a review of alternatives for production of cellulases in submerged fermentation using agroindustrial residues as carbon source, emphasizing the grape waste.
1.1. Lignocellulosic Materials, Agroindustrial Wastes

Lignocellulosic materials are the most abundant organic compounds in the biosphere, representing 50% of terrestrial biomass [1], which corresponds mainly by agribusiness materials, the urban waste, and the wood of angiosperms and gymnosperms [2].

According to Castro and Pereira Jr. (2010) [2], the lignocellulosic biomass is composed of three main polymer fractions: lignin, hemicellulose, and cellulose, which are joined to each other by covalent bonds, forming a complex network resistant to microbial attacks.

The cellulose from natural materials is the world’s most abundant biopolymer that is formed by residues of β-D-glucose bound together by β-1,4, bonds, and it maintains a linear and flat structure; cellobiose (Fig. 1, adapted of BON, et al., 2008), the disaccharide 4-O-β-D-glucopyranosyl-D-glucopyranose, is the repeating unit of the polymer [3] that can be hydrolyzed to glucose with the help of acids. The microbial degradation of cellulose is total and specific and has encouraged the use of cellulolytic fermentation processes by man. In nature, these processes represent the largest source of carbon to the soil [4].

(....) clique no link fornecido acima para ler o artigo completo

2. Conclusions

It is possible to produce cellulases from agroindustrial residues as the residue of grapes, but larger studies are needed in order to quantify these enzymes, their separation, and the optimization of the production process, so that they could be later used in a pilot-scale production of the same or at even an industrial scale.

With regard to the environmental question, one should always stress the importance of removing the residual of the environment and adding value to it, so that industries in various sectors such as food, textiles, and beverages could later take advantage of this proposal through the use of cellulases that are obtained from grape residue. For this to happen, further studies are needed for the purification of enzymes and their marketing, so that regional demands are met by these enzymes.

3. Acknowledgments

The authors acknowledge the support rendered by the Universidade Estadual do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, and CNPq.

4. References



[1] A. Sarko, How much do we know about its estructure?, in Wood and Cellulosics: Industrial Utilization. John Wiley & Sons, New York, 1997.

[2] A.M. De CASTRO, and N. PEREIRA JR., Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Química Nova. 33 (2010), pp. 181-188.

[3] E.A. Bayer, and R. Lamed, The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource. Biodegradation. 3 (1992) pp. 171-188.

[4] J.M. Lynch, J.H. Slater, J.A. Bennett, and S.H.T. Harper, Cellulase activities of some aerobic microorganisms isolated from soil. Journal of General Microbiology 127 (1981) pp. 231-236.

[5] G. Pauli, Upzing, (Porto Alegre, L&PM, 1998).

[6] E.P.S. Bon, M.A. Ferrara, M.L. Corvo, A.B. Vermelho, C.L.A.M. Paiva, R.B. De Alencastro, and R.R.R. Coelho, Enzimas em biotecnologia: Produção, aplicações e Mercado. Rio de Janeiro. Interciência, Portugal, 2008.

[7] M.A.Z Coelho, S.G.F. Leite, M.F. Rosa, and A.A.L. Furtado, Aproveitamento de resíduos agroindustriais: produção de enzimas a partir da casca de coco verde. Boletim CEPPA. 19 (2001) pp. 33-42.

[8] M.A. Mendes, and J.H.B. Araújo, Transformação de resíduos da indústria vinícola em produtos de interesse comercial. Mostra de Iniciação Científica e Tecnológica Interdisciplinar, Colégio Agrícola de Camboriú, UFSC, Balneário Camboriú, 2006.

[9] L.M.R. Mello, Produção e comercialização de uvas e vinhos – Panorama 2003, (Bento Gonçalves, Embrapa Uva e Vinho, Brasil, 2003).

[10] EMBRAPA, Uva e Vinho, Bento Gonçalves, 2010. Available at: www.cnpuv.embrapa.br.

[11] UVIBRA, União Brasileira de Vitivinicultura. Dados estatísticos, 2010. Available at: http://www.uvibra.com.br/dados_estatisticos.htm.

[12] Silva, L.A.D; Produção e caracterização de enzimas celulásicas por Aspergillus phoenicis. Master's Thesis, Universidade Federal do Rio Grande do Sul, 2008.

[13] C. Botella, I. De Ory, C. Webb, D. Cantero and A. Blandino, Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal 26 (2005), pp. 100 -106.

[14] D.J. Daroit, S.T. Silveira, P.F. Hertz, and A. Brandelli, Production of extracellular b-glucosidase by Monascus purpureus on different growth substrates. Process Biochemistry 42 (2007) pp. 904-908.

[15] S.T. Silveira, D.J. Daroit, A. Brandelli, Pigment production by Monascus purpureus in grape waste using factorial desing. Food Science and Technology 41 (2008), pp. 170-174.

[16] A.B. Díaz, I. De Ory, I. Caro, A. Blandino, Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food and Bioproducts Processing 90 (2012), pp. 72-78.

[17] L.R. Alberton, Produção de xilanase em resíduos agroindustriais por Streptomyces viridosporus t7a e aplicação do extrato bruto em veterinária. Doctoral thesis, Universidade Federal do Parana, 2004.

[18] U.C. Filho, Apostila: Cinética enzimática e uso e produção de enzimas; Universidade Federal de Uberlândia, 2006.

[19] A.L. Lehninger, D.L. Nelson, M.M. Cox, Princípios de bioquímica. (São Paulo, Sarvier, 2006).

[20] L.R. Lynd, P.J. Weimer, W.H.V. Zyl, I. S. Pretorius. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 66 (2002), pp. 506-577.

[21] A. Singh and K. Hayashi, Microbial cellulases: Protein architeture, molecular properties, and biosynthesis. Advances in Applied Microbiology, 40 (1995), pp. 1-44.

[22] M.K. Bhat and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances 15 (1997) pp. 583-620.

[23] T.K. Ghose, Measurement of cellulase activities. Pure & Applied Chemistry 59 (1987), pp. 257-268.

[24] M.K. Bhat, Cellulase and related enzymes in biotechnology. Biotechnology Advances 18 (2000) pp. 355-383.

[25] F. Vaillant, P. Milan, G. O' Brien, M. Dornier, M. Decloux and M. ReyneS, Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction. Journal of Food Engineering, 42 (1999), pp. 215 -254.

[26] F. Niehaus, C. Bertoldo, M. Kahler and G. Antranikian, Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology 51 (1999), pp. 711-729.

[27] S.I. Mussatto, M. Fernandes and A.M.M. Milagres, Enzimas: Poderosa ferramenta na indústria. Ciência Hoje, 41 (2007), pp. 28-33.

[28] O. Kirk, T.V. Borchert and C.C. Fuglsang, Industrial enzyme applications. Current Opinion in Biotechnology 13 (2002), pp. 345–351.

[29] J. Chen, Q. Wang, Z. Hua and G. Du, Research and application of biotechnology in textile industries in China. Enzyme and Microbial Technology 40 (2007), pp. 1651-1655.

[30] Y.H.P. Zhang, M.E. Himmel and J.R. Mielenz, Outlook for cellulose improvement: Screening and selection strategies. Biotechnology Advances, 24 (2006), pp. 452–481.

[31] Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials forethanol production: a Review. Bioresource Technology, 83 (2002), pp. 1–11.

[32] M. Papagianni, Fungal morphology and metabolite production in submerged mycelia processes. Biotechnology Advances 22 (2004), pp. 189–259.

[33] P.A. Gibbs, R.J. Seivour and F. Schimid, Growth of filamentous fungi in submerged culture: Problems and possible solutions. Critical Reviews in Biotechnology 20 (2000), pp. 17–48.

[34] Hanif, A.; Yasmeen, A. Rajoka, M.I. Induction, production, repression, and de-repressionof exoglucanase synthesis in Aspergillus Niger. Bioresource Technology, Oxford, v. 94, p. 311–319, 2004

[35] M.A. Velazquez-Cedeño, G. Mata, J.M. Savoie, Waste reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffe pulpe changes in the production of some lignocellulolytics enzymes. World Journal of Microbiology and Biotechnology 18 (2002), pp. 201-207.

[36] L.A. Serafini, N.M. Barros and J.L. Azevedo, Biotecnologia na agricultura e na agroindústria. (Guaíba, Agropecuária, 2001).

[37] C.A.R. Rosa, S.G. Campos and F.A. Baroni, Práticas de micologia veterinária. (Rio de Janeiro, Seropédica, 2002).

[38] J.W. Bennett, Mycotechnology: the role of fungi in biotechnology. Journal of Biotechnology 66, (1998) pp. 101-107.

[39] O.P. Ward, W.M. Qin, J. Dhanjoon, J. Ye and A. Singh, Physiology and biotechnology of Aspergillus. Advances in Applied Microbiology, 58 (2006), pp. 1-75.

[40] L.H. Grimm, S.Kelly, R. Krull and D.C. Hempel, Morphology and productivity of filamentous fungi. Applied Microbiology and Biotechnology, 69 (2005), pp. 375-384.

[41] J.C. Stewart and J.C. Parry, Factors influencing the productions of cellulase by Aspergillus fumigatus (Fresenius). Journal of General Microbiology 125 (1981), pp. 33-39.

[42] S.W. Kang, Y.S. Park, J.S. Lee, S.I. Hong and S.W. Kim, Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource Technology 91 (2004), pp. 153-156.

[43] D. Mamma, E. Kourtoglou, P. Christakopoulos, Fungal multienzyme production on industrial by-products of the citrus-processing industry. Bioresouce Technolology, 99 (2008) pp. 2373-2383.

[44] T.B. Ng, Peptides and proteins from fungi. Peptides, 25 (2004), pp. 1055-1073.

[45] C.M. de Aguiar, M.H.L. Margonar and S.L. Lucena, Produção de Celulases por Aspergillus niger: Cinética da Fermentação. XVI Encontro de Química da Região Sul, Blumenau, 2008.

[46] U.A. Lima, W. Schimdell, E. Aquarone and W. Borzani, Biotecnologia industrial: Processos Fermentativos e Enzimáticos. (São Paulo, Edgar Blüncher, 2001).

[47] T.L.F. Pinheiro, Produção de lipases por fermentação em estado sólido e fermentação submersa utilizando Penicillium verrucosum como microrganismo. Master's Thesis. Universidade Regional Integrada, 2006.

[48] L. Wang, D. Ridgway, T. Gu and M. Moo-Young, Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances, 23 (2005), pp. 115 -129.

[49] J. Gomes and D. Kumar, Production of L-methionine by submerged fermentation: A Review. Enzyme and Microbial Technology, 37 (2005), pp. 3-18.

[50] European Commission. Final Report: Collection of information on Enzymes. Austria, 2002.

[51] G. Volpato, Produção, purificação e imobilização de lipases de staphylococcus warneri EX17 produzidas em glicerol; Doctoral thesis. Universidade Federal do Rio Grande Do Sul, 2009.

[52] W.R. Carvalho, Caracterização bioquímica da endoxilanase recombinante (HXYN2r) do fungo termofílico Humicola grisea var. thermoidea e sua aplicação na sacarificação de resíduos agrícolas. Doctoral thesis, Universidade Federal de Goiás, 2008.

[53] D.H. Griffin, Fungal physiology, (New York, Wiley-Liss, 1994).

[54] A. Sridevi, G. Narashimha and B.R. Reddy, Production of Cellulase by Aspergillus niger on natural and pretreated lignocellulosic wastes. The Internet Journal of Microbiology. 7 (2009).

[55] C.L. Aguiar, T.J.B Menezes, Produção de celulases e xilanase por Aspergillus Níger IZ9 usando fermentação submersa sobre bagaço de cana-de-açúcar. Boletim Centro de Pesq Process Alimentos, 18, 2000.

[56] M. Deon, L.O. Da Rosa, R.A. Saggin, J.M. Finimundi and A.J.P. Dillon, Produção de Cogumelos de Pleurotus sajor-caju PS-2001 em Resíduos Lignocelulosicos constituídos de Serragem de Pinus sp e Bagaco de Vitis labrusca. XVII encontro de jovens pesquisadores da UCS, Caxias do Sul, 2009.

[57] S.L.R. Oliveira, T.C. Maciel, A.L.F. Pereira and S. Rodrigues, Produção de Celulase por Aspergillus phoenicis URM 4924 utilizando a casca do coco verde (Cocos nicifera L.) como substrato. IX ENPPG, IX ENICIT, III SIMPIT, Ceará, 2009.

[58] R.L.A. De Souza, L.S.C. Oliveira, F.L.H. Silva and B.C. Amorim, Caracterização da poligalacturonase produzida por fermentação semi-sólida utilizando-se resíduo do maracujá como substrato. Revista Brasileira de Engenharia Agrícola e Ambiental 14 (2010), pp.987–992.





Nenhum comentário:

Postar um comentário